Rigorous implementation of the Galerkin method for stepped structures needs generalized functions

نویسندگان

چکیده

In this paper we study free vibrations of stepped structures, specifically for longitudinal bars and flexural rectangular plates, providing two versions the Galerkin method. Specifically, first apply straightforward version method which stipulates employment procedure to be conducted in each subdomain, or step, structure. Second, rigorous realization is presented where structural parameters, like rigidity mass, are treated as generalized functions over entire domain. This latter implementation utilizes unit step functions, well Dirac's delta function, its derivative treat changes parameters across steps. It turns out that leads additional terms do not appear (or “naïve”) Both methods compared with exact solutions considered problems. increase number expansion, rigorous, generalized-functions based tends solution. contrast naïve Galerkin's method, usually utilized literature, does tend demonstrates extreme care must taken when implementing only should employed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Parallel Implementation of the Discontinuous Galerkin Method

This paper describes a parallel implementation of the discontinuous Galerkin method. The discontinuous Galerkin is a spatially compact method that retains its accuracy and robustness on non-smooth unstructured grids and is well suited for time dependent simulations. Several parallelization approaches are studied and evaluated. The most natural and symmetric of the approaches has been implemente...

متن کامل

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

Numerical strategies for the Galerkin-proper generalized decomposition method

The Proper Generalized Decomposition or, in short, PGD is a tensor decomposition based technique to solve PDE problems. It reduces calculation and storage cost drastically and presents some similarities with the Proper Orthogonal Decomposition, in short POD. In this work, we propose an efficient implementation to improve the convergence of the PGD, towards the numerical solution of a discretize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sound and Vibration

سال: 2021

ISSN: ['1095-8568', '0022-460X']

DOI: https://doi.org/10.1016/j.jsv.2020.115708